首页> 外文OA文献 >Distributed Constrained Recursive Nonlinear Least-Squares Estimation: Algorithms and Asymptotics
【2h】

Distributed Constrained Recursive Nonlinear Least-Squares Estimation: Algorithms and Asymptotics

机译:分布式约束递归非线性最小二乘估计:   算法和渐近性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper focuses on the problem of recursive nonlinear least squaresparameter estimation in multi-agent networks, in which the individual agentsobserve sequentially over time an independent and identically distributed(i.i.d.) time-series consisting of a nonlinear function of the true but unknownparameter corrupted by noise. A distributed recursive estimator of the\emph{consensus} + \emph{innovations} type, namely $\mathcal{CIWNLS}$, isproposed, in which the agents update their parameter estimates at eachobservation sampling epoch in a collaborative way by simultaneously processingthe latest locally sensed information~(\emph{innovations}) and the parameterestimates from other agents~(\emph{consensus}) in the local neighborhoodconforming to a pre-specified inter-agent communication topology. Under ratherweak conditions on the connectivity of the inter-agent communication and a\emph{global observability} criterion, it is shown that at every network agent,the proposed algorithm leads to consistent parameter estimates. Furthermore,under standard smoothness assumptions on the local observation functions, thedistributed estimator is shown to yield order-optimal convergence rates, i.e.,as far as the order of pathwise convergence is concerned, the local parameterestimates at each agent are as good as the optimal centralized nonlinear leastsquares estimator which would require access to all the observations across allthe agents at all times. In order to benchmark the performance of the proposeddistributed $\mathcal{CIWNLS}$ estimator with that of the centralized nonlinearleast squares estimator, the asymptotic normality of the estimate sequence isestablished and the asymptotic covariance of the distributed estimator isevaluated. Finally, simulation results are presented which illustrate andverify the analytical findings.
机译:本文着重讨论多智能体网络中递归非线性最小二乘参数估计的问题,其中各个智能体随时间顺序观察一个独立的且分布均匀的(iid)时间序列,该时间序列包含被噪声破坏的真实但未知参数的非线性函数。提出了\ emph {consensus} + \ emph {innovations}类型的分布式递归估计量,即$ \ mathcal {CIWNLS} $,其中,代理通过协作方式通过同时处理最新的观测值,在每个观测采样时期更新其参数估计值。本地感知的信息〜(\ emph {innovations})和参数估计值来自本地邻居中的其他代理〜(\ emph {consensus}),符合预先指定的代理间通信拓扑。在代理间通信的连通性和\ emph {global observability}准则的较弱条件下,表明在每个网络代理上,所提出的算法都可以得到一致的参数估计。此外,在关于局部观测函数的标准平滑度假设下,分布估计量显示出阶次最优收敛速度,即,就路径收敛的阶数而言,每个代理的局部参数估计与最优集中估计一样好。非线性最小二乘估计器,需要始终访问所有智能体上的所有观察值。为了用集中式非线性最小二乘估计器对所提出的分布式\ {mathcal {CIWNLS} $}估计器的性能进行基准测试,建立了估计序列的渐近正态性,并评估了分布估计器的渐近协方差。最后,给出了仿真结果,这些仿真结果说明并验证了分析结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号